Java
虚拟机把描述类的数据从Class
文件加载到内存,并对数据进行校验,转换解析和初始化,最终形成可以被虚拟机直接使用的Java
类型,这个过程被称作虚拟机的类加载机制。
一. 类加载的时机
一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading
),验证(Verification
),准备(Preparation
),解析(Resolution
),初始化(Initialization
),使用(Using
)和卸载(Unloading
)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking
)。这七个阶段的发生顺序如图:
加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类型的加载过程必须按 照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始, 这是为了支持Java语言的运行时绑定特性(也称为动态绑定或晚期绑定)。
关于在什么情况下需要开始类加载过程的第一个阶段“加载”,《Java虚拟机规范》中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。但是对于初始化阶段,《Java虚拟机规范》 则是严格规定了有且只有六种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之 前开始):
- 遇到
new
、getstatic
、putstatic
和invokestatic
这四条字节码指令时,如果类型没有进行过初始化,则需要先触发其初始化阶段。能够生成这四条指令的典型Java
代码场景有:- 使用
new
关键字实例化对象的时候; - 读取或设置一个类型的静态字段(被
final
修饰、已在编译期把结果放入常量池的静态字段除外)的时候; - 调用一个类型的静态方法的时候
- 使用
- 使用
java.lang.reflect
包的方法对类型进行反射调用的时候,如果类型没有进行过初始化,则需要先触发其初始化 - 当初始化类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化
- 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类
- 当使用
JDK 7
新加入的动态语言支持时,如果一个java.lang.invoke.MethodHandle
实例最后的解析结果为REF_getStatic
、REF_putStatic
、REF_invokeStatic
、REF_newInvokeSpecial
四种类型的方法句柄,并且这个方法句柄对应的类没有进行过初始化,则需要先触发其初始化。 - 当一个接口中定义了
JDK 8
新加入的默认方法(被default
关键字修饰的接口方法)时,如果有这个接口的实现类发生了初始化,那该接口要在其之前被初始化。
二. 类加载的过程
1. 加载
在加载阶段,虚拟机需要完成以下三件事情:
1)通过一个类的全限定名来获取定义此类的二进制字节流。
2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
3)在内存中生成一个代表这个类的java.lang.Class
对象,作为方法区这个类的各种数据的访问入口。
加载阶段结束后,Java
虚拟机外部的二进制字节流就按照虚拟机所设定的格式存储在方法区之中了。类型数据妥善安置在方法区之后,会在Java
堆内存中实例化一个java.lang.Class
类的对象, 这个对象将作为程序访问方法区中的类型数据的外部接口。加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的一部分,这两个阶段的开始时间仍然保持着固定的先后顺序。
2. 验证
验证是连接阶段的第一步,这一阶段的目的是确保Class
文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。《Java虚拟机规范》的早期版本(第1、2版)对这个阶段的检验指导是相当模糊和笼统的,直到2011年《Java虚 拟机规范(Java SE 7版)》出版,规范中大幅增加了验证过程的描述(篇幅从不到10页增加到130 页),这时验证阶段的约束和验证规则才变得具体起来。从整体上看,验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。
2.1 文件格式验证
第一阶段要验证字节流是否符合Class
文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:
是否以魔数
0xCAFEBABE
开头。主、次版本号是否在当前
Java
虚拟机接受范围之内。常量池的常量中是否有不被支持的常量类型(检查常量tag标志)。
指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。
CONSTANT_Utf8_info
型的常量中是否有不符合UTF-8编码的数据。Class
文件中各个部分及文件本身是否有被删除的或附加的其他信息。……
实际上第一阶段的验证点还远不止这些,上面所列的只是从
HotSpot
虚拟机源码 [1] 中摘抄的一小部分内容,该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段 验证之后,这段字节流才被允许进入Java虚拟机内存的方法区中进行存储,所以后面的三个验证阶段全部是基于方法区的存储结构上进行的,不会再直接读取、操作字节流了。
2.2 元数据验证
第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要 求,这个阶段可能包括的验证点如下:
这个类是否有父类(除了
java.lang.Object
之外,所有的类都应当有父类)。这个类的父类是否继承了不允许被继承的类(被
final
修饰的类)。如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。
类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。
……
第二阶段的主要目的是对类的元数据信息进行语义校验,保证不存在与《Java语言规范》定义相悖的元数据信息。
2.3 字节码验证
第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class
文件中的Code
属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为,例如:
保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中”这样的情况。
保证任何跳转指令都不会跳转到方法体以外的字节码指令上。
保证方法体中的类型转换总是有效的,例如可以把一个子类对象赋值给父类数据类型,这是安全 的,但是把父类对象赋值给子类数据类型,甚至把对象赋值给与它毫无继承关系、完全不相干的一个 数据类型,则是危险和不合法的。
……
2.4 符号引用验证
最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用 [3] 的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。本阶段通常需要校验下列内容:
符号引用中通过字符串描述的全限定名是否能找到对应的类。
在指定类中是否存在符合方法的字段描述符及简单名称所描述的方法和字段。
符号引用中的类、字段、方法的可访问性(private、protected、public、<package>)是否可被当前类访问。
……
验证阶段对于虚拟机的类加载机制来说,是一个非常重要的、但却不是必须要执行的阶段,因为验证阶段只有通过或者不通过的差别,只要通过了验证,其后就对程序运行期没有任何影响了。如果程序运行的全部代码(包括自己编写的、第三方包中的、从外部加载的、动态生成的等所有代码)都已经被反复使用和验证过,在生产环境的实施阶段就可以考虑使用-Xverify:none
参数来关闭大部分的 类验证措施,以缩短虚拟机类加载的时间。
3. 准备
准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段,从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK 7及之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的;而在JDK 8及之后,类变量则会随着Class对象一起存放在Java堆中,这时候“类变量在 方法区”就完全是一种对逻辑概念的表述了,关于这部分内容,笔者已在4.3.1节介绍并且验证过。
关于准备阶段,还有两个容易产生混淆的概念笔者需要着重强调,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:
public static int value = 123;
那变量value
在准备阶段过后的初始值为0而不是123,因为这时尚未开始执行任何Java
方法,而把 value
赋值为123的putstatic
指令是程序被编译后,存放于类构造器<clinit>()
方法之中,所以把value
赋值为123的动作要到类的初始化阶段才会被执行。
上面提到在“通常情况”下初始值是零值,那言外之意是相对的会有某些“特殊情况”:如果类字段 的字段属性表中存在ConstantValue
属性,那在准备阶段变量值就会被初始化为ConstantValue
属性所指定 的初始值,假设上面类变量value
的定义修改为:
public static final int value = 123;
编译时Javac
将会为value
生成ConstantValue
属性,在准备阶段虚拟机就会根据Con-stantValue
的设置将value
赋值为123。
4. 解析
解析阶段是Java
虚拟机将常量池内的符号引用替换为直接引用的过程,符号引用在Class
文件中它以CONSTANT_Class_info
、 CONSTANT_Fieldref_info
、CONSTANT_Methodref_info
等类型的常量出现,那解析阶段中所说的直接引用与符号引用又有什么关联呢?
符号引用(
Symbolic References
):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定是已经加载到虚拟机内存当中的内容。各种虚拟机实现的内存布局可以各不相同, 但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在《Java虚拟机规 范》的Class文件格式中。直接引用(
Direct References
):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局直接相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在虚拟机的内存中存在。
5. 初始化
类的初始化阶段是类加载过程的最后一个步骤,之前介绍的几个类加载的动作里,除了在加载阶段用户应用程序可以通过自定义类加载器的方式局部参与外,其余动作都完全由Java虚拟机来主导控 制。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程序。
进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。我们也可以从另外一种更直接的形式来表达:初始化阶段就是执行类构造器<clinit>()
方法的过程。<clinit>()
并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物,但我们非常有必要了解这个方法具体是如何产生的,以及 <clinit>()
方法执行过程中各种可能会影响程序运行行为的细节,这部分比起其他类加载过程更贴近于普通的程序开发人员的实际工作。<clinit>()
方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的 语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问,如下:
public class Test {
static {
i = 0; // 给变量复制可以正常编译通过
System.out.print(i); // 这句编译器会提示“非法向前引用”
}
static int i = 1;
}
三. 类加载器
Java
虚拟机设计团队有意把类加载阶段中的“通过一个类的全限定名来获取描述该类的二进制字节 流”这个动作放到Java
虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为“类加载器”(Class Loader)。
类加载器可以说是Java
语言的一项创新,它是早期Java
语言能够快速流行的重要原因之一。类加载器最初是为了满足Java Applet
的需求而设计出来的,在今天用在浏览器上的Java Applet
技术基本上已经被淘汰,但类加载器却在类层次划分、OSGi、程序热部署、代码加密等领域大放异彩,成为Java 技术体系中一块重要的基石,可谓是失之桑榆,收之东隅。
1. 类与类加载器
类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远超类加载阶段。对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每 一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相 等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class
文件,被同一个Java
虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。
这里所指的“相等”,包括代表类的Class
对象的equals()
方法、isAssignableFrom()
方法、isInstance()
方法的返回结果,也包括了使用instanceof
关键字做对象所属关系判定等各种情况。如果没有注意到类加载器的影响,在某些情况下可能会产生具有迷惑性的结果。
2. 双亲委派模型
站在Java
虚拟机的角度来看,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader
),这个类加载器使用C++语言实现 ,是虚拟机自身的一部分;另外一种就是其他所有的类加载器,这些类加载器都由Java
语言实现,独立存在于虚拟机外部,并且全都继承自抽象类 java.lang.ClassLoader
。
站在Java开发人员的角度来看,类加载器就应当划分得更细致一些。自JDK 1.2以来,Java一直保持着三层类加载器、双亲委派的类加载架构,尽管这套架构在Java模块化系统出现后有了一些调整变动,但依然未改变其主体结构。
本节内容将针对JDK 8及之前版本的Java来介绍什么是三层类加载器,以及什么是双亲委派模型。 对于这个时期的Java应用,绝大多数Java程序都会使用到以下3个系统提供的类加载器来进行加载。
启动类加载器(
Bootstrap Class Loader
):前面已经介绍过,这个类加载器负责加载存放在<JAVA_HOME>\lib
目录,或者被-Xbootclasspath
参数所指定的路径中存放的,而且是Java虚拟机能够识别的(按照文件名识别,如rt.jar、tools.jar,名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时, 如果需要把加载请求委派给引导类加载器去处理,那直接使用null代替即可,如下展示的就是java.lang.ClassLoader.getClassLoader()
方法的代码片段,其中的注释和代码实现都明确地说明了以null值来代表引导类加载器的约定规则。/** * Returns the class loader for the class. * Some implementations may use null to represent the bootstrap class load */ public ClassLoader getClassLoader() { ClassLoader cl = getClassLoader0(); if (cl == null) return null; SecurityManager sm = System.getSecurityManager(); if (sm != null) { ClassLoader ccl = ClassLoader.getCallerClassLoader(); if (ccl != null && ccl != cl && !cl.isAncestor(ccl)) { sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); } } return cl; }
扩展类加载器(
Extension Class Loader
):这个类加载器是在类sun.misc.Launcher$ExtClassLoader
中以Java
代码的形式实现的。它负责加载<JAVA_HOME>\lib\ext
目录中,或者被java.ext.dirs
系统变量所指定的路径中所有的类库。根据“扩展类加载器”这个名称,就可以推断出这是一种Java
系统类库的扩展机制,JDK
的开发团队允许用户将具有通用性的类库放置在ext
目录里以扩展Java SE
的功能,在JDK 9
之后,这种扩展机制被模块化带来的天然的扩展能力所取代。由于扩展类加载器是由Java
代码实现 的,开发者可以直接在程序中使用扩展类加载器来加载Class
文件。应用程序类加载器(
Application Class Loader
):这个类加载器由sun.misc.Launcher$AppClassLoader
来实现。由于应用程序类加载器是ClassLoader
类中的getSystemClassLoader()
方法的返回值,所以有些场合中也称它为“系统类加载器”。它负责加载用户类路径 (ClassPath
)上所有的类库,开发者同样可以直接在代码中使用这个类加载器。如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
JDK 9
之前的Java应用都是由这三种类加载器互相配合来完成加载的,如果用户认为有必要,还可 以加入自定义的类加载器来进行拓展,典型的如增加除了磁盘位置之外的Class
文件来源,或者通过类 加载器实现类的隔离、重载等功能。图中展示的各种类加载器之间的层次关系被称为类加载器的“双亲委派模型(Parents Delegation Model)”。双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应有自己的父类加载器。不过这里类加载器之间的父子关系一般不是以继承(Inheritance)的关系来实现的,而是通常使用 组合(Composition)关系来复用父加载器的代码。
双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载。
使用双亲委派模型来组织类加载器之间的关系,一个显而易见的好处就是Java中的类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object
,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都能够保证是同一个类。反之,如果没有使用双亲委派模型,都由各个 类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object
的类,并放在程序的 ClassPath中,那系统中就会出现多个不同的Object类,Java类型体系中最基础的行为也就无从保证,应 用程序将会变得一片混乱。如果读者有兴趣的话,可以尝试去写一个与rt.jar类库中已有类重名的Java类,将会发现它可以正常编译,但永远无法被加载运行。
双亲委派模型的实现:
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
synchronized (getClassLoadingLock(name)) {
// First, check if the class has already been loaded
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
if (c == null) {
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
这段代码的逻辑清晰易懂:先检查请求加载的类型是否已经被加载过,若没有则调用父加载器的 loadClass()
方法,若父加载器为空则默认使用启动类加载器作为父加载器。假如父类加载器加载失败, 抛出ClassNotFoundException
异常的话,才调用自己的findClass()
方法尝试进行加载。
3. 破坏双亲委派模型
在Java
的世界中大部分的类加载器都遵循这个模型,但也有例外的情况,直到Java
模块化出现为止,双亲委派模型主要出现过3次较大规模“被破坏”的情况。
双亲委派模型的第一次“被破坏”其实发生在双亲委派模型出现之前——即JDK 1.2面世以前的“远古”时代。由于双亲委派模型在JDK 1.2之后才被引入,但是类加载器的概念和抽象类 java.lang.ClassLoader
则在Java的第一个版本中就已经存在,面对已经存在的用户自定义类加载器的代码,Java设计者们引入双亲委派模型时不得不做出一些妥协,为了兼容这些已有代码,无法再以技术手段避免loadClass()
被子类覆盖的可能性,只能在JDK 1.2之后的java.lang.ClassLoader
中添加一个新的 protected
方法findClass()
,并引导用户编写的类加载逻辑时尽可能去重写这个方法,而不是在 loadClass()中编写代码。上节我们已经分析过loadClass()
方法,双亲委派的具体逻辑就实现在这里面, 按照loadClass()
方法的逻辑,如果父类加载失败,会自动调用自己的findClass()
方法来完成加载,这样既不影响用户按照自己的意愿去加载类,又可以保证新写出来的类加载器是符合双亲委派规则的。
双亲委派模型的第二次“被破坏”是由这个模型自身的缺陷导致的,双亲委派很好地解决了各个类加载器协作时基础类型的一致性问题(越基础的类由越上层的加载器进行加载),基础类型之所以被称为“基础”,是因为它们总是作为被用户代码继承、调用的API存在,但程序设计往往没有绝对不变的完美规则,如果有基础类型又要调用回用户的代码,那该怎么办呢?
这并非是不可能出现的事情,一个典型的例子便是JNDI服务,JNDI现在已经是Java的标准服务, 它的代码由启动类加载器来完成加载(在JDK 1.3时加入到rt.jar的),肯定属于Java中很基础的类型 了。但JNDI存在的目的就是对资源进行查找和集中管理,它需要调用由其他厂商实现并部署在应用程序的ClassPath
下的JNDI服务提供者接口(Service Provider Interface,SPI)的代码,现在问题来了,启动类加载器是绝不可能认识、加载这些代码的,那该怎么办?
为了解决这个困境,Java的设计团队只好引入了一个不太优雅的设计:线程上下文类加载器 (Thread Context ClassLoader
)。这个类加载器可以通过java.lang.Thread类的setContextClassLoader()
方法进行设置,如果创建线程时还未设置,它将会从父线程中继承一个,如果在应用程序的全局范围内都没有设置过的话,那这个类加载器默认就是应用程序类加载器。
有了线程上下文类加载器,程序就可以做一些“舞弊”的事情了。JNDI服务使用这个线程上下文类加载器去加载所需的SPI服务代码,这是一种父类加载器去请求子类加载器完成类加载的行为,这种行为实际上是打通了双亲委派模型的层次结构来逆向使用类加载器,已经违背了双亲委派模型的一般性原则,但也是无可奈何的事情。Java中涉及SPI的加载基本上都采用这种方式来完成,例如JNDI、 JDBC、JCE、JAXB和JBI等。不过,当SPI的服务提供者多于一个的时候,代码就只能根据具体提供者的类型来硬编码判断,为了消除这种极不优雅的实现方式,在JDK 6时,JDK提供了 java.util.ServiceLoader
类,以META-INF/services
中的配置信息(参考),辅以责任链模式,这才算是给SPI的加载提供了一种相对合理的解决方案。
双亲委派模型的第三次“被破坏”是由于用户对程序动态性的追求而导致的,这里所说的“动态 性”指的是一些非常“热”门的名词:代码热替换(Hot Swap)、模块热部署(Hot Deployment)等。说 白了就是希望Java应用程序能像我们的电脑外设那样,接上鼠标、U盘,不用重启机器就能立即使用, 鼠标有问题或要升级就换个鼠标,不用关机也不用重启。对于个人电脑来说,重启一次其实没有什么 大不了的,但对于一些生产系统来说,关机重启一次可能就要被列为生产事故,这种情况下热部署就 对软件开发者,尤其是大型系统或企业级软件开发者具有很大的吸引力。